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Transformation and Self-Similarity Properties of 
Gamma and Weibull Fragment Size Distributions 

 
Culbert B. Laney1 

Engility Corp., 8211 Terminal Rd, Lorton, VA 22079 U.S.A. 
 

Abstract: This paper describes properties of two-parameter Gamma and Weibull size 
distributions, of the type commonly used for liquid and solid fragmentation. Starting with 
general three-parameter forms, this paper systematically derives, categorizes, and compares 
logical variations on two-parameter Gamma and Weibull size distributions. Based on 
comparisons with test data, rare variants may sometimes perform as well as, or better than, well-
known variants. Gamma distributions have traditionally been used for liquid fragmentation 
while Weibull distributions have traditionally been used for solid fragmentation. Based on 
comparisons with test data, Gamma and Weibull distributions appear to be equally applicable to 
both liquid and solid fragmentation. 
 
Keywords: fragment size distributions, aerosol size distributions, Gamma size distributions, 
Weibull size distributions, Rosin-Rammler size distributions, Nukiyama-Tanasawa size 
distributions, generalized Gamma size distributions, root normal size distributions, Mott-Linfoot 
size distributions, universal size distributions 
 
1. Introduction 

This paper describes the transformation and self-similarity properties of a wide range of two-
parameter Gamma and Weibull size distributions, including those commonly used for liquid and 
solid fragmentation. Transformation properties have been previously explored in, e.g., Paloposki 
(1991). Self-similarity (normalization) properties have been previously explored in, e.g., Lee et. 
al. (2004). The current treatment expands on these earlier treatments.  
 
Size distributions are commonly written in eight different forms. As defined here, the 
transformation condition requires that all eight forms have, at most, mild (integrable) 
singularities. It would not make physical sense for a size distribution to be well-behaved in one 
ordinary form but to experience severe (non-integrable) singularities in another ordinary form. 
As shown here, Gamma and Weibull size distributions, as classes, satisfy the transformation 
condition over a broad range of parameter space. 
 
Bennett (1936) suggested expressing fragment size distributions in normalized forms, i.e., with 
the independent variable divided by a characteristic or average size. As a typical outcome, Levy 
et. al. (2010) observed: “astonishingly, a simple normalization of the x axis by the average 
fragment mass [or volume or diameter] gathers all the initially scattered data into a single curve.”  
 
Friedlander & Wang (1966) noted that such normalizations are simple examples of self-
preserving or self-similar size distributions. Expanding on this observation, Spicer & Pratsinis 
(1996) defined self-similar size distributions as cases “when the steady-state size distributions 
                                                 
1 E-mail address: Bert.Laney@engilitycorp.com 
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scaled by the average particle volume [or diameter or mass] collapses onto a single size 
distribution.”  
 
As defined here, there are three self-similarity conditions: 

1. When a size distribution is expressed in terms of a given average size, it should actually 
obtain that average size. 

2. When a size distribution is expressed in terms of a given average size, and that average 
size changes, key free parameters in the size distribution should remain the same. 

3. When a size distribution is expressed in terms of a given average size, and that average 
size changes, the size distribution should stay the same.  

 
Many previous studies have concluded that different materials exposed to different conditions 
may still experience similar fragmentation outcomes. This suggests the existence of standard or 
universal size distributions. Well-known examples include Mott & Linfoot (1943), Marshall & 
Palmer (1948), and Simmons (1977). In essence, universal size distributions involve parameters 
that assume a small number of discrete values – as few as one or two – as opposed to an infinite 
number of continuous values.  
 
The third self-similarity condition is an essential property of universal size distributions. A 
distribution is hardly “universal” if it changes when the arbitrary normalization changes. The 
second self-similarity condition is a desirable, but not essential, property of universal size 
distributions. Universals are typically associated with certain parameters. However, unless a 
universal obtains the second self-similarity condition, these parameters change when the 
arbitrary normalization changes.  
 
2. Size Distributions 
 
Let D be the fragment diameter and let M be the fragment mass. The eight most common ways 
of expressing size distributions are as follows: 
 

)(DFM [ )(MFM ] is the mass fraction of fragments with diameters [masses] greater than 
or equal to D [M]. 

 
)(DfM  [ )(MfM ] is the mass fraction of fragments with diameters [masses] in a range 

dD centered on D divided by dD [dM centered on M divided by dM] 
 

)(DF  [ )(MF ] is the number fraction of fragments with diameters [masses] greater than 
or equal to D [M] 

 
)(Df  [ )(Mf ] is the number fraction of fragments with diameters [masses] in a range 

dD centered on D divided by dD [dM centered on M divided by dM] 
 
This list excludes minor variations such as MF1  and the use of fragment volume instead of 
fragment mass. 
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Notice that MF  is monotone decreasing such that 1)0( MF  and 0)( MF . In addition, Mf  is 
always non-negative such that: 





0

1)( dxxfM                                                            (1a) 

 
Similarly, F  is monotone decreasing such that 1)0( F  and 0)( F . In addition, f  is always 
non-negative such that: 





0

1)( dxxf                                                            (1b) 

 
In standard probability theory, F is called a complementary cumulative distribution function 
(CCDF) and f  is called a probability density function (PDF).  
 
The eight forms defined above are related to each other by eight equations. The first of these 
equations is as follows: 
 

mDsM                                                                   (2) 
 
where   is the density, s  is a constant shape factor, and m is the spatial dimension ( 31 m ).  
 
For classic aerosols with nearly-spherical droplets, 3m  and 6/s . Alternatively, Wittel et. 
al. (2006) found regular isotropic eggshell fragments have m = 2 and needle-like plate glass 
fragments have m = 1.5, which “implies that fragments have a self-affine character, meaning that 
the larger they are, the more elongated they get.” 
 
The next two transformation equations are as follows: 
 

)()( DFMF MM                                                            (3) 
 

)()( DFMF                                                                (4) 
 
which come from the definitions of )(DFM , )(MFM , )(DF , and )(MF . The fourth 
transformation equation is as follows: 
 

)(~)( DfDDf m
M                                                      (5a) 

 
or equivalently: 

)(~)( MMfMfM                                                       (5b) 
 
For example, see Brown (1989) and Brown & Wohletz (1995). The last four transformation 
equations are well-known and standard: 
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



D

MM dxxfDF )()( ; 
dD

dFDf M
M )(                                   (6) 

 





M

MM dxxfMF )()( ; 
dM
dFMf M

M )(                                 (7) 

 





D

dxxfDF )()( ; 
dD
dFDf )(                                        (8)                                     

 





M

dxxfMF )()( ; 
dM
dFMf )(                                      (9) 

 
3. Average Sizes 
 
Consider the following average diameters: 
 





0

)( dDDDfDavg                                                         (10) 





0

)( dDDfDD MM avg                                                    (11) 

 
Equation (10) and (11) are known as the count mean diameter (CMD) and the mass mean 
diameter (MMD), respectively. The count mean diameter is also known as the arithmetic mean 
diameter or the number mean diameter. Similarly: 

 






0

)(
1

dD
D
Df

Davg                                                      (12) 

 






0

)(
1

dD
D

Df
D

M
avgM                                                   (13) 

 
Equation (13) is known as the Sauter mean diameter (SMD). Finally, consider the following 
average masses: 

 





0

)( dMMMfM avg                                                      (14) 
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



0

)( dMMfMM MM avg                                                (15) 

 
For liquid atomization, it is common to use the following ratio: 
 

avgM

avgM
M D

D
R


                                                          (16) 

 
Notice that avgMD  emphasizes small fragments while avgMD emphasizes large fragments. As a 

result,  MR1  measures fragment size spread where 1MR  corresponds to the least 
possible spread (i.e. monodisperse) while MR  corresponds to the greatest possible spread.  
 
As an empirical observation, different size distributions are often almost the same when MR  is 
almost the same. Thus it is common to see aerosol size distributions specified exclusively in 
terms of MR , e.g., Simmons (1977), Wu et. al. (1991), Chou & Faeth (1998), and Sallam et. al. 
(2006). Alternatively: 
 

avg

avg

D
D

R


                                                                 (17) 

 
The observations made above about MR  apply equally to R . 
 
When transforming size distributions between different forms, it is useful to have ratios such as 
the following: 
 

avg

avgM

D
D

Q                                                              (18) 

: 

m
avgM

avgM
M Ds

M
S


                                                        (19a) 

 

m
avg

avg

Ds
M

S


                                                            (19b) 

 
Notice that MS  measures skewness, where 1MS  if the fragment size distribution is evenly 
balanced between small and large fragments, e.g., a uniform size distribution. Similar 
observations apply to S. 
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4. General Three-Parameter Form 
 
 4.1 Introduction 
 
Assuming 0n , Rosin & Rammler (1927, 1933) proposed the following general form for solid 
fragmentation: 
 

 nk
M bDDDf exp~)(                                                (20) 

 
where k, n, and b are three free parameters. For a modern English language description of this 
distribution, see Stoyan (2013). Building on Rosin & Rammler (1927, 1933), Nukiyama & 
Tanasawa (1938a, b) proposed the following general form for liquid fragmentation: 
 

 nl bDDDf exp~)(                                                 (21) 
 
where l, n, and b are three free parameters. For a modern English language description of this 
distribution, see Hiroyasu (2006). By Equation (5), Equations (20) and (21) are identical if: 
 

mlk                                                            (22) 
 
Bennett (1936) suggested dividing D by a reference diameter, e.g., the 63.2%-quantile. Using 

avgD  as the reference diameter, the final general three-parameter form is as follows: 
 













































n

avg

l

avgavg D
Db

D
D

AD
Df exp1)(                                     (23) 

 
Notice that Equation (23) appears to have five free parameters, namely, A, l, n, b, and avgD . 
However, if Equation (23) obeys Equation (1) and obtains the correct avgD  per the first self-
similarity condition, the number of free parameters is reduced from five to three.  
 
Equations (20), (21), and (23) were originally derived empirically via fits to experimental data. 
More recently, Dumouchel (2006, 2009) showed that these equations can be derived theoretically 
using a maximum entropy approach; the given proof generalizes earlier work, e.g., Griffith 
(1943), Li & Tankin (1987), Cousin et. al. (1996). 
 
Besides being called Rosin-Rammler and Nukiyama-Tanasawa size distributions, Equations 
(20), (21), and (23) are sometimes called generalized Gamma size distributions after Stacy 
(1962); see, e.g., Lushnikov (2010), Dumouchel (2009), Dumouchel et. al. (2012). Less 
commonly, Equations (20), (21), and (23) are called Fréchet (1927) size distributions; see, e.g., 
Vázquez & Gañán-Calvo (2010). In fact, Crooks (2010) cataloged over 50 different names for 
closely-related distributions, all described as special cases of Amoroso (1925) distributions. With 
so many names in play, Stoyan (2013) reasonably suggested that “a neutral technical name like 
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‘powered exponential distribution’ might be more suitable.” However, this risks adding yet 
another name to an already long list.  
 
 4.2 Transformation Expressions 
 
Using the expressions from Section 2, Equation (23) can be recast into eight equivalent forms; 
see Table 1. In Table 1, l, n, b, d, A, and B are parameters, m is the spatial dimension defined by 
Equation (2), )(x  is the gamma function, and ),( xs  is the upper incomplete gamma function.  
 
Table 1a. Rosin-Rammler (a.k.a., Nukiyama-Tanasawa or generalized Gamma) size distributions expressed 
in terms of F and f. 








 

































n
l

D
Db

n
l

DF

n

avg

1

,1

)(  








 



































n
l

M
Md

n
l

MF

m
n

avg

1

,1

)(  













































n

avg

l

avgavg D
Db

D
D

AD
Df exp1)(  


















































m
n

avg

m
l

avgavg M
Md

M
SM

mAM
SMf exp)(
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Table 1b. Rosin-Rammler (a.k.a., Nukiyama-Tanasawa or generalized Gamma) size distributions expressed 
in terms of FM and fM. 
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The expressions in Table 1 are valid if 0s  and 0x  in ),( xs . The first condition is true if: 
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



n
l

 ; 01




n
ml

 

 
Equivalently: 
 

1l  and 0n                                                          (24a) 
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or: 
 

1 ml  and 0n                                                       (24b) 
 
The second condition is true if: 
 

0b ; 0d                                                                (25) 
 
Paloposki (1991) first obtained these results for the special case .3m   
 
Notice that Equation (24) changes if the choice of the average fragment size changes. This is 
discussed further in Section 4.3. In addition, notice that Equation (24) allows unphysical size 
distributions with infinite R  or .MR Section 4.4 derives more restrictive conditions that avoid 
this.  
 
Notice that if n is negative, which is rare, these are sometimes called negative or inverse 
generalized Gamma distributions, Twomey (1977), Deepak & Box (1982), Kondratyev et. al. 
(2006). The best known negative generalized Gamma (a.k.a., Rosin-Rammler or Nukiyama-
Tanasawa) size distribution is due to Griffith (1943); see also Tishkoff & Law (1977) and Grady 
& Kipp (1987). 
 
 4.3 Self-Similarity Condition 1 
 
The first self-similarity condition requires that Equation (23) obtain the correct avgD  and avgM . 
Let: 
 

 dxbxxW nil
i  



 exp
0

                                               (26) 

 
Assuming 0b  and 0/)1(  nil : 
 

n
ili

bn

n
il

W 1

1










 


                                                       (27) 

 
Table 2 shows the parameter settings required to ensure the first self-similarity condition.  
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Table 2. Relationships among parameters for Rosin-Rammler (a.k.a., Nukiyama-Tanasawa or generalized 
Gamma) size distributions which ensure the correct Davg and Mavg.                
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Notice that, as expected, all of the expressions in Table 2 are valid if Equation (24) is true. 
 
Suppose avgMD  is used as the reference diameter instead of avgD . Then Equation (23) becomes: 
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In this case, Table 3 replaces Table 2.  
 
Table 3. Relationships among parameters for Rosin-Rammler (a.k.a., Nukiyama-Tanasawa or generalized 
Gamma) size distributions which ensure the correct DM avg and MM avg.                                                   
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Notice that all the expressions in Table 3 are valid if: 
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Equivalently: 
 

1Ml  and 0Mn                                                           (29a) 
 
or: 
 

12  mlM  and 0Mn                                                      (29b) 
 
In other words, Equation (29) replaces Equation (24) when avgMD  replaces avgD .  
 
Suppose avgD  is used as the reference diameter instead of avgD . Then Equation (23) becomes: 
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In this case, Table 4 replaces Table 2.  
 
Table 4. Relationships among parameters for Rosin-Rammler (a.k.a., Nukiyama-Tanasawa or generalized 
Gamma) size distributions which ensure the correct Dʹavg and Mʹavg.                                                   
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Notice that all the expressions in Table 4 are valid if: 
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Equivalently: 
 

1 ml  and 0n                                                        (31a) 
 
or: 

 
1 ml  and 0n                                                      (31b) 

 
In other words, Equation (31) replaces Equation (24) when avgD  replaces avgD .  
 
Suppose avgMD  is used as the reference diameter instead of avgD . Then Equation (23) becomes: 
 

















































 MM n

avgM
M

l

avgMavgMM D
Db

D
D

DA
Df exp1)(                               (32) 

 
In this case, Table 5 replaces Table 2.  
 
Table 5. Relationships among parameters for Rosin-Rammler (a.k.a., Nukiyama-Tanasawa or generalized 
Gamma) size distributions which ensure the correct DʹM avg and MʹM avg. 
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Notice that all the expressions in Table 5 are valid if: 
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Equivalently: 
 

1Ml  and 0Mn                                                        (33a) 
 
or: 
 

1 mlM  and 0Mn                                                    (33b) 
 
In other words, Equation (33) replaces Equation (24) when avgMD  replaces avgD .  
 

4.4 Self-Similarity Condition 2 
 
The second self-similarity condition requires that changing the average fragment size does not 
change certain key parameters. For example, suppose the invariant parameters are l and n. In 
other words: 

MM llll   

MM nnnn   
  
Table 6 gives expressions for ratios of averages for Equation (23), (28), (30), and (32).  
 
Table 6. Ratios of averages for Rosin-Rammler (a.k.a., Nukiyama-Tanasawa or generalized Gamma) size 
distributions assuming l and  n are invariant. 
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Notice that the expressions in Table 6 are valid if: 
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Equivalently: 
 

0l  and 0n                                                          (34a) 
 
or: 
 

2 ml  and 0n                                                     (34b) 
 
Where it is more restrictive, it is recommendation that Equation (34) be used in place of  
Equations (24), (29), (31), and (33). The results are summarized in Table 7. 
 
Table 7. Recommended parameter range for Rosin-Rammler (a.k.a., Nukiyama-Tanasawa or generalized 
Gamma)  size distributions assuming that l and n do not depend on the choice of the average fragment size. 

Average Size 0n  0n  
avgD , avgM  0l  2 ml  

avgMD , avgMM  0l  12  ml  

avgD , avgM   1ml  2 ml  

avgMD , avgMM   0l  2 ml  
 

4.5 Self-Similarity Condition 3 

The third self-similarity condition requires that changing the average fragment size does not 
change the size distribution. In general, even when the size distribution stays the same, all the 
parameters change; an iterative technique is required to find the new parameters. However, 
suppose that the parameters l and n are invariant. Using Tables 2, 3, and 6, it can be shown that:  
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This, in turn, implies that Equations (23) and (28) are the same. Similarly, using Tables 2, 4, and 
6, it can be shown that:  
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This, in turn, implies that Equations (23) and (30) are the same. Finally, using Tables 2, 5, and 6, 
it can be shown that: 
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This, in turn, implies that Equations (23) and (32) are the same.  
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5. Alternative Three-Parameter Form 
 

5.1 Introduction 
 
In Equation (23), replace D by M  and avgD  by avgM  to obtain: 
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5.2 Transformation Condition 

 
Using the expressions from Section 2, Equation (38) can be recast into eight equivalent forms; 
see Table 8.  
 
Table 8a. Alternative three-parameter size distributions expressed in terms of F and f. 
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Table 8b. Alternative three-parameter size distributions expressed in terms of FM and fM. 
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The expressions in Table 8 are valid if 0s  and 0x  in ),( xs . The first condition is true if: 
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Equivalently: 
 

1l  and 0n                                                          (39a) 
 
or: 
 

2l  and 0n                                                         (39b) 
 
The second condition is true if: 
 

0b ; 0d                                                                (40) 
 
Equation (39) changes if the choice of the average fragment size changes; see Section 5.3. In 
addition, Equation (39) allows physical size distributions with infinite R  or ;MR  see Section 5.4 
for more restrictive conditions that avoid this.  
 

5.3 Self-Similarity Condition 1 
 
The first self-similarity condition requires that Equation (37) obtain the correct avgD and avgM .  
Table 9 shows the parameter settings required to ensure the first self-similarity condition. 
 
Table 9. Relationships among parameters for alternative three-parameter size distributions which ensure the 
correct Davg and Mavg.      
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Notice that, as expected, all of the expressions in Table 9 are valid if Equation (39) is true. 
 
Suppose avgMM  is used as the reference mass instead of avgM . Then Equation (38) becomes: 
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In this case, Table 10 replaces Table 9.  
 
Table 10. Relationships among parameters for alternative three-parameter size distributions which ensure 
the correct DM avg and MM avg. 
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Notice that all the expressions in Table 10 are valid if: 
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Equivalently: 
 

1Ml  and 0Mn                                                           (42a) 
 
or: 
 

3Ml  and 0Mn                                                           (42b) 
 
In other words, Equation (42) replaces Equation (39) when avgMM  replaces avgM . Similar 
expressions may be obtained when avgM   or avgMM   replaces avgM . 
 

5.4 Self-Similarity Condition 2 
 
The second self-similarity condition requires that changing the average fragment size does not 
change certain key parameters. For example, suppose the invariant parameters are l and n. In 
other words: 

Mll   

Mnn   
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Then Table 11 gives expressions for ratios of averages for Equations (38) and (41).  
 
Table 11. Ratios of averages for alternative three-parameter size distributions assuming l and n are invariant. 
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Notice that the expressions in Table 11 are valid if: 
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Equivalently: 
 

1/1  ml  and 0n                                                          (43a) 
 
or: 
 

2/1  ml  and 0n                                                       (43b) 
 
Where it is more restrictive, it is recommendation that Equation (43) be used in place of 
Equations (39) or (42).  
 

5.5 Self-Similarity Condition 3 
 
The third self-similarity condition requires that changing the average fragment size does not 
change the size distribution. In general, even when the size distribution stays the same, all the 
parameters change; an iterative technique is required to find the new parameters. However, 
suppose that the parameters l and n are invariant. Then using Tables 9, 10, and 11, it can be 
shown that Equations (38) and (41) are the same. A similar approach applies for other average 
sizes. 
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6. Two-Parameter Form: Gamma Size Distributions 
 
 6.1 Introduction 
 
Dumouchel (2009) and Dumouchel et. al. (2012) note that the general form given in Section 4 
has “a problem of parameter stability that manifests by drastic variations of their values for 
reasonable changes in the initial conditions.” This and the following sections consider possible 
two-parameter subsets with more stable parameters. Consider the following size distributions: 
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Type III: 












































 n

avg

b

avgavg
M M

Mb
M
M

BM
Mf exp1)(

1

   (46) 

 

Type IV:  












































 n

avg

b

avgavg M
Mb

M
M

AM
Mf exp1)(

1

    (47) 

 
Equations (44) to (47) will be referred to as Gamma size distributions. Type I and II Gamma size 
distributions are examples of Rosin-Rammler (a.k.a Nukiyama-Tanasawa or generalized 
Gamma) size distributions as discussed in Section 4 with: 
 

Type I:   1 mbl   (i.e., 1 bk )      (48a) 
Type II: 1 bl           (48b) 

 
Similarly, Type III and IV Gamma size distributions are examples of the alternative three-
parameter size distributions as discussed in Section 5 with: 
 

Type III: 2 bl  (i.e., 1 bk )       (49a) 
Type IV: 1 bl           (49b) 

 
Until recently, Gamma size distributions were rarely used for fragmentation or its reverse, 
coagulation. In their first known appearance, Melzak (1953) showed that, if the initial size 
distribution is a Type IV Gamma size distribution, then the Smoluchowsk coagulation equation 
has an analytical solution; see also Friedlander & Wang (1966), Scott (1968), and Lindblad 
(2005, 2007).  
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As another example, consider fragmentation of unitary solid or liquid bodies. Based on 
computational results for Veronoi tesselations, Kiang (1966) suggested using Type IV Gamma 
size distributions. Since then, researchers have actively debated whether two-parameter Gamma 
size distributions can be used, as Kiang conjectured, or whether full three-parameter generalized 
Gamma distributions must be used instead, e.g., Hinde & Miles (1980), Tanemura (1988, 2003), 
Okabe et. al. (2000), Ferenc & Néda (2007). 
 
More recently, Villermaux et. al. (2004) used Type II Gamma size distributions to describe 
“spray formed when a fast gas stream blows over a liquid volume.” As a theoretical justification, 
they showed that Gamma size distributions are analytical solutions of Smoluchowski-type 
coagulation equations, reversing the role of input and output relative to Melzak (1953), 
Friedlander & Wang (1966), Scott (1968), and Lindblad (2005, 2007). To extend this 
observation from coagulation to fragmentation, they argued that a common liquid “fragmentation 
mechanism …, somewhat surprisingly, consists of a coalescence process.”  
 
While this may be true, there are at least two other possible explanations. First, based on a 
literature review, Vázquez & Gañán-Calvo (2010) suggested a simple “analogy between the 
equations of coalescence and fragmentation.” Alternatively, in certain cases, coagulation and 
fragmentation may be inverse processes. Bertoin (2006) notes that “in general, time-reversal 
does not transform a fragmentation process into a coalescent process, and vice-versa” but that in 
selected cases there may be “remarkable duality between coagulation and fragmentation;” see 
also Dong et. al. (2006). The properties of Gamma size distributions, such as their close 
relationship to Poisson-Dirichlet distributions as described in Feller (1971), may qualify them for 
such duality. If so, the fact that Gamma size distributions are a natural initial state for 
coagulation, as noted above, means that they may also be a natural final state for fragmentation. 
 
For other examples of Type II Gamma size distributions see, e.g., Marmottant & Villermaux 
(2004a, 2004b), Bremond & Villermaux (2006), Bremond et. al. (2007), Villermaux (2007), 
Eggers & Villermaux (2008), Villermaux & Bossa (2009, 2011), and Lhuissier & Villermaux 
(2013). In general, these papers treat the given Gamma size distributions as universals. In 
particular, Villermaux & Eggers (2008) note that “universality means that breakup is difficult to 
control, since its characteristics are independent of initial conditions.” 
 

6.2 Transformation Conditions 
 

Using the expressions from Section 2, Equations (44) to (47) can each be recast into eight 
equivalent forms. As an example, Table 12 shows eight different forms for Type II Gamma size 
distributions. Table 12 is obtained by substituting 1 bl  and 1n  in Table 1.   
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Table 12a. Type II Gamma distributions for expressed in terms of F and f. 
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Table 12b. Type II Gamma distributions expressed in terms of FM and fM. 
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By Equations (24a) and (48), the transformation condition for Type I and II Gamma size 
distributions are as follows:  
 
 Type I:  mb           (50a) 
 Type II : 0b          (50b) 
 
By Equations (24b), (25), and (48), 0b  and 0n  are specifically excluded.  
 
By Equations (39a) and (49), the transformation condition for Type III and IV Gamma size 
distribution are as follows: 
 
 Type III: 1b          (51a) 
 Type IV: 0b          (51b) 
 
By Equations (38b), (39), and (49), 0b  and 0n  are, again, specifically excluded.  
 

6.3 Self-Similarity Condition 1 
 
As an example, let 1 mbl  in Table 2. Then for Type I Gamma size distributions, the 
correct avgD  is obtained if: 
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Unfortunately, this expression lacks an analytical solution for n; solutions must be found 
iteratively. As another example, let 1 bl  in Table 2. Then for Type II Gamma size 
distributions, the correct avgD  is obtained if: 
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Fortunately, this has a very simple analytical solution. In particular, the relation )()1( bbb   
implies 1n . 
 
Similar results apply for Type III and IV Gamma size distributions; see Table 13 for an overall 
summary. Table 13 is derived by substituting Equations (48) and (49) into Tables 2 and 9. 
 
Table 13. Parameters for Gamma size distributions which ensure the correct Davg and Mavg. 
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Notice that, as expected, all of the expressions in Table 13 are valid if Equations (50) and (51) 
are true. 
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Suppose avgMD  is used as the reference diameter instead of avgD  and, similarly, avgMM  is used 
as the reference mass instead of avgM . Then Equations (44) to (47) become: 
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As an example, let 1 mbl MM  in Table 3. Then for Type I Gamma size distributions, the 
correct avgMD  is obtained if: 
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Fortunately, this has a very simple analytical solution. In particular, the relation 

)()1( MMM bbb   implies 1Mn .  
 
As another example,  let 1 MM bl  in Table 3. Then for Type II Gamma size distributions, the 
correct avgMD  is obtained if: 
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Unfortunately, this expression lacks an analytical solution for Mn ; solutions must be found 
iteratively. Similar results apply for Type III and IV Gamma size distributions; see Table 14 for 
an overall summary.  
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Table 14. Parameters for Gamma size distributions which ensure the correct DM avg and MM avg. 
 I II III IV 

Mn  1 
M

M

n

M

M

n

M

M

M

n
mb

n
mb

b








 









 




1

 1 
M

M

n

M

M

n

M

M

M

n
b

n
b

b








 









 



1

2

 

Md  
 
  m

M

m
M

b
mb

/1

/1




 

m
n

M

M

m
n

M

M

M

M

n
mb

n
mb








 









 


2

 
 

m
M

m
M

b
mb

)(
/1



  
M

M

mn

M

M

mn

M

M

n
b

n
mb








 









 


1

1/1

 

MS  
 
 M

M
m
M b

mb
b 

1
 








 









 


M

Mn
m

M

M

M

n
mbb

n
mb

M

2

 
 

 mb
bb

M

M
m

M

/1

/1




 








 









 


M

M

M

mn
M

n
ml

n
b

b M

1/1

1
1

 

MA  
 

mb
M

Mb
mb



  











M

M
M

M n
bb

n
Mn
Mb

1  1
)1(




Mb

M

M

b
b  













M

M
M

M n
bb

n
Mn
Mb

1  

MB  b
M

M

b
b )(  










 





M

Mn
b

M
M n

bb
n

M

M 11 1

 
 

Mb
M

M

b
b  










 





M

Mn
b

M
M n

bb
n

M

M 11 1

 

 
Similar expressions may be obtained for avgM  , avgD  and avgMM  , avgMD . 
 

6.4 Self-Similarity Condition 2 
 
The second self-similarity condition requires that changing the average fragment size does not 
change key parameters. Sections 4.4 and 5.4 assumed that l and n are invariant while b is non-
invariant. However, for Gamma distributions, l is a function of b. Since b is non-invariant, l must 
also be non-invariant. Thus, in fact, Gamma size distributions have no invariant parameters.  
 
To distinguish between the different parameters sets, A, B, C, and D may be used to refer to 
normalization by avgMD , avgD , avgMD , and avgD , respectively. For example, Table 14 gives 
expressions for ratios of fragment averages for Type IA, IIB, IIIA, and IVB Gamma size 
distributions. 
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Table 15. Ratios of averages for selected Gamma size distributions. 
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6.5 Self-Similarity Condition 3 
 
As already noted, the parameters in the Gamma size distribution change when the normalization 
changes. However, the Gamma size distribution itself may remain approximately the same. In 
fact, Type IIA, IIB, and IID Gamma size distributions are nearly identical except for the smallest 
fragments.  
 
Figure 1 shows an example where the Type IIA curve is plotted as )( 11 DQfQ  , the Type IIB 
curve is plotted as )(Df , and the Type IID curve is plotted as )(RDRf .  
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(a.) Log-log plane 
 

 
(b.) Linear-linear plane 
 
Figure 1. An example showing that Gamma size distributions may be approximately the same regardless of 
normalization. In particular, the Type IIA is normalized by (and ensures the correct value for) the mass 
mean diameter, the Type IIB is normalized by (and ensures the correct value for) the count mean diameter, 
and the Type IID is normalized by (and ensures the correct value for) the average defined by Equation (12).  
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7. Two-Parameter Form: Weibull Size Distributions 
 

7.1 Introduction  
 
Consider the following size distributions: 
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Equations (58) to (61) will be referred to as Weibull size distributions after Weibull (1939a,b). 
For a modern treatment of Weibull distributions, see, e.g., Rinne (2008). Type I and II Weibull 
size distributions are examples of Rosin-Rammler (a.k.a. Nukiyama-Tanasawa or generalized 
Gamma) size distributions as discussed in Section 4 with: 
 

Type I:   1 mnl   (i.e., 1 nk )      (62a) 
Type II: 1 nl           (62b) 

 
Notice that Equation (62) is the same as Equation (48), except that n replaces b. Similarly, Type 
III and IV Weibull size distributions are examples of alternative three-parameter size 
distributions as discussed in Section 5 with: 
 

Type III: 2 nl    (i.e., 1 nk )       (63a) 
Type IV: 1 nl           (63b) 

 
Notice that Equation (63) is the same as Equation (49), except that n replaces b.  
 
It can be shown that Type I and III Weibull distributions are the same, provided that n in the 
Type III equals n/m in the Type I (and that the other parameters are adjusted accordingly). 
Similarly, Type II and IV Weibull distributions are the same, provided that n in the Type IV 
equals n/m in the Type II (and that the other parameters are adjusted accordingly).  
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Type I Weibull distributions are commonly known as Rosin-Rammler-Sperling-Bennett (RRSB) 
distributions after Rosin et. al. (1933) and Bennett (1936). Type II Weibull distributions are 
sometimes known as generalized Mott-Linfoot distributions after Mott & Linfoot (1943), e.g., 
Mock & Holt (1983), Grady et. al. (2001), Grady (2006), Arnold & Rottenkolber (2008).  
 
As an example, the meteorology community commonly uses the Marshall-Palmer (1948) law for 
raindrop size distributions. The Marshall-Palmer law is a universal Type II Weibull size 
distribution with n = 1 and m = 3. Villermaux & Bossa (2009) showed that the Marshall-Palmer 
law can be “understood from the fragmentation products of non-interacting, isolated drops.” As 
another example, the weapons effects community commonly uses the Mott-Linfoot (1943) 
distributions to describe metal casing fragments; see also, e.g., Grady (2006). The Mott-Linfoot 
distributions are universal Type II Weibull distributions with n/m equal to 1/2 or 1/3. 
 

7.2 Transformation Condition 
 
Using the expressions from Section 2, Equations (58) to (61) can each be recast into eight 
equivalent forms. As an example, Table 16 shows eight different forms for Type II Weibull size 
distributions. Table 16 is obtained by substituting 1 nl  in Table 1. Notice that the expression 

)exp(),1( xx   has been used. 
 
Table 16a. Type II Weibull size distributions expressed in terms of F and f. 
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Table 16b. Type II Weibull size distributions expressed in terms of FM and fM. 
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By Equations (24) and (62), the transformation conditions for Type I and II Weibull size 
distributions are as follows:  
 
 Type I:  mn   or 0n        (64a) 
 Type II : 0n  or mn         (64b) 
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By Equations (39) and (63), the transformation conditions for Type III and IV Weibull size 
distribution are as follows: 
 
 Type III: 1n  or 0n        (65a) 
 Type IV: 0n  or 1n        (65b) 
 
When n is negative, which is rare, these are sometimes called negative or inverse or reverse 
Weibull distributions, e.g., Rinne (2008), Lai (2014). Negative Weibull distributions have mainly 
been used for reliability engineering rather than fragmentation. 
 

7.3 Self-Similarity Condition 1 

Table 17 shows the parameters which ensure that Equations (58) to (61) obtain the correct avgD
and avgM . Table 17 is derived by substituting Equations (62) and (63) into Tables 2 and 9. 
 
Table 17. Parameters for Weibull distributions which ensure the correct Davg and Mavg. 
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Suppose avgMD  is used as the reference diameter instead of avgD  and, similarly, avgMM  is used 
as the reference mass instead of avgM . Assume that this change does not affect the key parameter 
n. Then Equations (58) to (61) become: 
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Then Table 18 replaces Table 17.  
 
Table 18. Parameters for Weibull distributions which ensure the correct DM avg and MM avg. 
 I II III IV 
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Similar expressions may be obtained for avgM  , avgD  and avgMM  , avgMD . 
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7.4 Self-Similarity Condition 2 
 
The second self-similarity condition requires that changing the average fragment size does not 
change key parameters. Sections 4.4 and 5.4 assumed that l and n were invariant. For Weibull 
distributions, l is a function of the invariant n. Thus both l and n are, in fact, invariant.  
 
Table 19 gives expressions for ratios of fragment averages. Table 19a is obtained by substituting 
Equation (64) in Table 6. Similarly, Table 19b is obtained by substituting Equation (65) into 
Table 11. 
 
Table 19a. Ratios of averages for Type I and II Weibull distributions. 
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Table 19b. Ratios of averages for Type III and IV Weibull distributions. 
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7.4 Self-Similarity Condition 3 
 
The proofs given in Section 4.5 and 5.5 apply. In other words, when n is fixed and the other 
parameters vary as in Table 18, Weibull distributions are the same regardless of the choice of 
average fragment size.  
 
8. Modified Gamma and Weibull Distributions 

As defined here, Type I and II modified Gamma size distributions are examples of Rosin-
Rammler (a.k.a Nukiyama-Tanasawa or generalized Gamma) size distributions as discussed in 
Section 4 with: 
 

Type I:   1 mibl           (70a) 
Type II: 1 ibl           (70b) 

 
where i is any integer greater than 1. Notice that Equation (70) is the same as Equation (48), 
except that ib replaces b. Similarly, Type III and IV modified Gamma size distributions are 
examples of the alternative three-parameter size distributions as discussed in Section 5 with: 
 

Type III: 2 ibl           (71a) 
Type IV: 1 ibl           (71b) 

 
where i is any integer greater than 1. Notice that Equation (71) is the same as Equation (49), 
except that ib replaces b. 
 
As defined here, Type I and II modified Weibull size distributions are examples of Rosin-
Rammler (a.k.a Nukiyama-Tanasawa or generalized Gamma) size distributions as discussed in 
Section 4 with: 
 

Type I:   1 minl           (72a) 
Type II: 1 inl           (72b) 

 
where i is any integer greater than 1. Notice that Equation (72) is the same as Equation (62), 
except that in replaces n. Similarly, Type III and IV modified Gamma size distributions are 
examples of the alternative three-parameter size distributions as discussed in Section 5 with: 
 

Type III: 2 inl           (73a) 
Type IV: 1 inl           (73b) 

 
where i is any integer greater than 1. Notice that Notice that Equation (73) is the same as 
Equation (63), except that in replaces n.  
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For example, suppose .2i  Then modified Weibull distributions can be written as follows: 
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

























































n

avg

n

avg
M M

Mb
M
MbMF exp1)(    (76) 
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The expression )exp()1(),2( xxx   has been used.  
 
Levy et. al. (2010) first suggested Type IV modified Weibull distributions. Daphalapurkar 
(2015) later suggested Type II modified Weibull distributions. Limited comparisons conducted 
to date indicate that modified Weibull and Gamma distributions are, for all practical purposes, 
identical to Weibull and Gamma distributions. They are included here for the sake of 
completeness. 
 
9. Comparisons to Test Data 
 
This section compares Gamma and Weibull size distribution to liquid spray atomization test data. 
Small size spread data is taken from Pimentel et. al. (2010), medium size spread data is taken 
from Li & Tankin (1987) and Tishkoff (1979), and large size spread data is taken from Tuner & 
Moulton (1953).  
 
 9.1 Gamma Size Distributions 
 
Figures 2, 3, and 4 compare Gamma size distributions to small, medium, and large size spread 
data, respectively. The Type II Gamma size distributions were taken from Villermaux (2007) and 
Marmottant & Villermaux (2004a, b). The Type I, III, and IV Gamma size distributions were 
obtained by matching R to the Type II Gamma size distributions. 
 
As seen in these examples, Gamma size distributions typically match test data well, albeit the 
agreement sometimes deteriorates at the extremes. With the parameter choices made here, Type I 
and II Gamma distributions generally outperform Type III and IV Gamma distributions.  
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(a.) Log-log plane 
 

 
 
(b.) Linear-Linear Plane 
 
Figure 2. Gamma size distributions vs. small size spread test data for spray atomization taken from Pimentel 
et. al. (2010). The Type II parameter b=17 is taken from Villermaux (2007). The Type I, III, and IV 
parameters are chosen so that all size distributions have R=1.0625. In all cases, m=3. 
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(a.) Log-log plane 
 
 

 
(b.) Linear-linear plane 
 
Figure 3. Gamma size distributions vs. medium size spread test data for spray atomization taken from Li & 
Tankin (1987) and Tishkoff (1979). The Type II parameter b=6 is taken from Marmottant & Villermaux 
(2004a). The Type I, III, and IV parameters are chosen so that all size distributions have R=1.2. In all cases, 
m=3. 
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(a.) Log-log plane 
 

 
(b.) Linear-linear plane 
 
Figure 4. Gamma size distributions vs. large size spread test data for spray atomization taken from Turner & 
Moulton (1953). The Type II parameter b=2.81 is taken from Marmottant & Villermaux (2004b). The Type I, 
III, and IV parameters are chosen so that all size distributions have R=1.5525. In all cases, m=3. 
 
 
  



 
 

36 

9.2 Weibull Size Distributions  
 
Figures 5, 6, 7, and 8 compare Weibull size distributions to small, medium, and large size spread 
data, respectively. The Type II Weibull size distributions were taken from Onose & Fujiwara 
(2004), Grady et. al. (2001), and Mott & Linfoot (1943). The Type I, III, and IV Weibull size 
distributions were obtained by matching R to the Type II Weibull size distributions.  
 
Near the mean for small size spreads, the Weibull distributions skew either right or left, while the 
test data is nearly symmetric. Other than this, Weibull size distributions offer a reasonably good 
match to test data. This is true despite the fact that the chosen Weibull distributions were 
originally meant for solid rather than liquid fragmentation.  
 
Notice that positive Weibull distributions revert to a power law, i.e., they become linear in the 
log-log plane, for very small fragments. Similarly, negative Weibull distributions revert to a 
power law, i.e., they become linear in the log-log plane, for very large fragments. 
 
As noted earlier, Type I and III Weibull distributions are identical to each other. Similarly, Type 
II and IV Weibull distributions are identical to each other. With the parameter choices made 
here, Type II and IV Weibull distributions tend to outperform Type I and III Weibull 
distributions. 
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(a.) Log-log plane 
 

 
(b.) Linear-linear plane 
 
Figure 5. Weibull size distributions vs. small size spread test data for spray atomization taken Pimentel et. al. 
(2010). All size distributions have R=1.086 and m=3. 
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(a.) Log-log plane 

 

Figure 6. Negative (inverse) Weibull size distributions vs. small size spread test data for spray atomization 
taken Pimentel et. al. (2010). The Type II parameter n/m=-1.5 is taken from Onose & Fujiwara (2004). The 
Type I, III, and IV parameters are chosen so that all size distributions have R=1.086. In all cases, m=3. 
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(a.) Log-log plane 
 

 
(b.) Linear-linear plane 
 
Figure 7. Weibull size distributions vs. medium size spread test data for spray atomization taken from Li & 
Tankin (1987) and Tishkoff (1979). The Type II parameter n/m=0.667 is taken from Grady et. al. (2001). The 
Type I, III, and IV parameters are chosen so that all size distributions have R=1.5708. In all cases, m=3. 
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(a.) Log-log plane 
 

 
(b.) Linear-linear plane 
 
Figure 8. Weibull size distributions vs. large size spread test data for spray atomization taken from Turner & 
Moulton (1953). The Type II parameter n/m=0.5 is taken from Mott & Linfoot (1943). The Type I, III, and IV 
parameters are chosen so that all size distributions have R=2.418. In all cases, m=3. 
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9.3 Gamma vs. Weibull vs. Root Normal Size Distributions 

Figures 9, 10, and 11 compare Type II Gamma, Weibull, and root normal size distributions for 
small, medium, and large size spreads, respectively.  
 
In Figure 9, the Gamma size distribution is taken from Villermaux (2007), the Weibull size 
distribution is taken from Onose & Fujiwara (2004), and the root normal size distribution is 
taken from Sallam et. al. (2006); see also Laney (2015). Notice that RM = 1.05 ± 0.9% in all three 
cases. Also notice that the Gamma and root normal size distributions are approximately the 
same, except for the smallest fragments.  
 
In Figure 10, the Gamma size distribution is taken from Marmottant & Villermaux (2004a), the 
Weibull size distribution is taken from Grady et. al. (2001), and the root normal size distribution 
is taken from Wu et. al. (1991); see also Laney (2015). Notice that RM = 1.13 ± 0.5% in all three 
cases. 
 
In Figure 11, the Gamma size distribution is taken from Marmottant & Villermaux (2004b), the 
Weibull size distribution is taken from Mott & Linfoot (1943), and the root normal size 
distribution is taken from Empie et. al. (1995, 1997); see also Laney (2015). Notice that           
RM = 1.20 ± 0.7% in all three cases. Also notice that the Weibull and root normal size 
distributions are approximately the same. 
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(a.) Log-log plane 
 

 
(b.) Linear-linear plane 
 
Figure 9. Type II Gamma, Weibull, and root normal size distributions vs. small size spread test data for spray 
atomization taken from Pimentel et. al. (2010). All size distributions have RM  ≈ 1.05 and m=3. 
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(a.) Log-log plane 
 
 

 
(b.) Linear-linear plane 
 
Figure 10. Type II Gamma, Weibull, and root normal size distributions vs. medium size spread test data for 
spray atomization taken from Li & Tankin (1987) and Tishkoff (1979). All size distributions have RM  ≈ 1.13 
and m=3. 
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(a.) Log-log plane 
 

 
(b.) Linear-linear plane 
 
Figure 11. Type II Gamma, Weibull, and root normal size distributions vs. large size spread test data for 
spray atomization taken from Turner & Moulton (1953). All size distributions have RM  ≈ 1.20 and m=3. 
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10. Conclusions 
 
This paper has described a number of variants on traditional two-parameter Gamma and Weibull 
distributions. Each distribution has been classified as one of four types. Within a given type, each 
distribution has been categorized as either positive or negative, modified or unmodified.  
 
For Weibull distributions, the traditional choices are Type I and Type II, unmodified and 
positive; all other variants described here are rare or new. For Gamma distributions, the 
traditional choices are Type II and IV, unmodified and positive; all other variants described here 
are rare or new. (Notice that there are no negative Gamma distributions.) While initial 
comparisons with test data are promising, more work is required to determine under what 
circumstances, if any, rare and new variants equal or outperform traditional choices.  
 
Table 20 summarizes the transformation and self-similarity properties of Gamma and Weibull 
distributions. Notice that these properties are the same for all variants. For additional perspective, 
Table 20 also includes root normal size distributions; see Laney (2015).   
 
Table 20. Summary of transformation and self-similarity conditions for three different families of size 
distributions. 

Distribution Transformation 
Condition  
(No Severe 

Singularities 
Regardless of 

Form)  

Self-Similarity Conditions 
1.  

(Ensures 
Correct 

Average) 
 

2. 
(Parameters 

Same for 
Different 
Averages) 

3. 
(Distribution 

Same for 
Different 
Averages) 

Gamma (all variants)     
Weibull (all variants)     
Traditional Root Normal (Type I)      
Improved   Root Normal (Type II)     
 
Gamma and root normal size distributions are traditionally used for liquid fragmentation while 
Weibull distributions are traditionally used for solid fragmentation. However, based on the 
comparisons given here, they both appear to be equally applicable to liquid and solid 
fragmentation. This is not surprising given that three-parameter Rosin-Rammler size 
distributions – which underlie Gamma and Weibull size distributions – are commonly used for 
both liquid and solid fragmentation. 
 
Except for power laws, most if not all universal size distributions suggested in the research 
literature belong to one of the three families listed in Table 20. Of the families listed in Table 20, 
only Weibull size distributions obtain the second self-similarity condition. This means that the 
exact parameter choice is potentially meaningful for those universals, such as Mott-Linfoot and 
Marshall-Palmer, expressed as Weibull size distributions – but not for those expressed as 
Gamma or root normal size distributions.  
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